Single mid-chain GlcNAc β 1-6Gal β 1-4R sequences of **linear oligosaccharides are resistant to endo-fl-galactosidase of** *Bacteroides fragilis*

OSSI RENKONEN*, LEENA PENTTILÄ, RITVA NIEMELÄ and ANNE LEPPANEN

Institute of Bioteehnology and Department of Biochemistry, University of Helsinki, Valimotie 7, 00380 Helsinki, Finland

Received 24 January 1991

Endo-*B*-galactosidase (EC 3.2.1.103) of *Bacteroides fragilis*, at 250 mU ml⁻¹, did not cleave the internal galactosidic linkage of the linear radiolabelled trisaccharide GlcNAc β 1-6Gal β 1-4GlcNAc, or those of the tetrasaccharides Gal β 1-4GlcNAc β 1-6Gal β 1-4GlcNAc and Gal β 1-4GlcNAc β 1-6Gal β 1-4Glc. The isomeric glycans which contained the GlcNAc β 1-3Gal β 1-4GlcNAc/Glc sequence were readily cleaved.

Keywords: endo-*ß*-galactosidase, *Bacteroides fragilis*, oligo-N-acetyllactosaminoglycans, GlcNAcß1-6Galß1-4R sequences

Abbreviations: GlcNAc, 2-acetamido-2-deoxy-D-glucose; Lact, lactose; MT, maltotriose; MTet, maltotetraose, R_{MTet} , chromatographic migration rate in relation to that of maltotetraose.

Endo-/3-galactosidase of *Bacteroides fragilis* cleaves linear $GlcNAc\beta$ 1-3Gal β 1-4GlcNAc/Glc sequences of poly- and oligo-N-acetyllactosaminoglycans at the internal galactosidic linkages [1, 2], but it fails to hydrolyse branched structures of the type GlcNAc β 1-3(GlcNAc β 1-6)Gal β 1-4GlcNAc [2-4]. The substrate properties of linear GlcNAc- β 1-6Gal β 1-4GlcNAc sequences have been studied recently by Hanisch et al. [5], who reported that the internal galactosidic linkages of Gal β 1-3/4GlcNAc β 1-6Gal β 1-4Glc- $NAc\beta$ 1-6Gal β 1-4GlcNAc β 1-6(Gal β 1-3)GalNAcOL, and of related saccharides, are cleavable.

The present experiments, too, represent an attempt to define the substrate properties of linear GlcNAc β 1-6Gal β 1-4GlcNAc/Glc sequences. Unexpectedly, our data show that the radiolabelled trisaccharide GlcNAc β 1-6Gal β 1-4GlcNAc (2) and two radiolabelled tetrasaccharides, $Ga1\beta1-4G1cNAc\beta1 6Ga1\beta1-4GlcNAc$ (6) and $Ga1\beta1-4GlcNAc\beta1-6Ga1\beta1-4Glc$ (8), were not cleaved by the enzyme.

Materials and methods

Substrate trisaccharides

Isolation of radiolabelled GlcNAc β 1-3Gal β 1-4GlcNAc (1) and GlcNAc β 1-6Gal β 1-4GlcNAc (2) from teratocarcinoma cells has been described [61; their specific radioactivities are unknown. Other samples of radiolabelled glycan 1 were

0282-0080/91 \$03.00+.12 © 1991 Chapman and Hall Ltd

synthesized enzymatically as described [7], scaling up the reaction to obtain enough material for NMR spectroscopy. Purified 1 gave a 1 H-NMR spectrum containing "structural reporter peaks" F8] that were identical with those reported by Koenderman *et al.* [9] for GlcNAcβ1-3Galβ1-4GlcNAc. A synthetic sample of GlcNAc β 1-6[1-¹⁴C]Gal β 1-4GlcNAc (2) was also prepared [10]. It was obtained from the branched tetrasaccharide GlcNAc β 1-3(GlcNAc β 1-6)[1-¹⁴C]-Gal_{*B*1}-4GleNAc, synthesized enzymatically *in vitro* as described [7]. The branched tetrasaccharide gave a 500 MHz ¹H-NMR spectrum that revealed "structural reporter peaks" identical with those reported by Koenderman *et al.* [9] for $GlcNAcB1-3(GlcNAcB1-6)GalB1-4GlcNAc$ (a peak that was not listed by Koenderman et *al.* was present in the spectrum of our sample at 2.071ppm). The tetrasaccharide was subjected to partial β -N-acetylhexosaminidase cleavage which gave a mixture containing the original substrate, GlcNAc β 1-3[1-¹⁴C]Gal β 1-4GlcNAc (1), GlcNAc β 1-6[1-¹⁴C]-Gal β 1-4GlcNAc(2), and [1-¹⁴C]Gal β 1-4GlcNAc. This mixture was fractionated by paper chromatography to yield the pure saccharides, including $2 \lceil 10 \rceil$. The trisaccharide GlcNAc β 1-3Gal β 1-4[1-¹⁴C]Glc (3) was prepared from Gal β 1-4[1-¹⁴C]Glc (Amersham, UK) and UDP-GlcNAc (Sigma, St Louis, MO, USA) essentially as described by Yates and Watkins [11]. The product was homogeneous in paper chromatography ($R_{\text{Lact}} = 0.74$ in solvent A); it was cleaved completely by treatment [6] with β -N-acetylhexosaminidase from jack bean, regenerating labelled lactose.

^{*} To whom correspondence should be addressed.

The unlabelled trisaccharide $GlcNAc\beta1-6Ga1\beta1-4Glc$ (4) was purchased from Sigma. According to the manufacturer, the structure of this synthetic trisaccharide has been confirmed by 13C-NMR spectroscopy.

Galactosylation of trisaccharides with fl(1-4)-galactosyltransferase [12]

The labelled trisaccharides 1-3 were incubated overnight at 37°C under toluene with 50 nmol UDP-Gal (Sigma) and 50 mU bovine milk N-acetyllactosamine synthase (EC 2.4.1.90) (Sigma) in a mixture that contained in $100 \mu l$, $5 \mu mol$ Tris-HCl, pH 7.5, and 1μ mol MnCl₂. The unlabelled trisaccharide 4 (85 nmol) was galactosylated in a similar mixture containing 2 nmol $(= 0.5 \,\mu\text{C})$ UDP-[U-¹⁴C]Gal (New England Nuclear, Dreieich, Germany).

Endo-fl-galactosidase treatment of oligosaccharides

The labelled oligosaccharides in 40 ml of 50 mm sodium acetate buffer, pH 5.8, containing 0.2 mg mI⁻¹ bovine serum albumin and 0.5 mg ml⁻¹ NaN₃, were incubated for 24 h at 37°C with 10 mU of endo- β -galactosidase (EC 3.2.1.103) from *Bacteroidesfragilis* (Boehringer, Mannheim, Germany (see [1, 2]). The reactions were terminated by boiling for 3 min. Pure GlcNAc β 1-3[1-¹⁴C]Gal β 1-4GlcNAc was cleaved in control experiments consistently to the extent of 98-99%.

Treatment with DipIococcus pneumoniae fl-galactosidase [13]

This enzyme (EC 3.2.1.23) was used as described [14].

Paper chromatography

Prior to paper chromatography, the oligosaccharides were desalted by filtration through Dowex AG-1X8 (AcO⁻) and Dowex AG-50-WX8 $(H⁺)$. The paper chromatograms were run as described $[14]$ by using the upper phase of *n*butanol:acetic acid:water, 4:1:5 by vol (solvent A), or n-butanol:ethanol:water, 10:1:2 by vol (solvent B). Radiolabelled saccharides were localized as described [14]; unlabelled glycans were stained with aniline phthalate.

Marker saccharides

Unlabelled N-acetylglucosamine, glucose, galactose, lactose and GlcNAc β 1-6Gal were purchased from Sigma; the maltooligosaccharides were from Boehringer. Radiolabelled $GlcNAc\beta1-3Gal$ and $GlcNAc\beta1-6Gal$ have been described previously [6]. *[U-14C]Galfil-4GlcNAcfll-6Gal* was obtained as described [14]. $[^3H]Ga1\beta1-4GlcNAc\beta1-3Ga1$ from labelled paragloboside [15] was obtained from Dr Michiko Fukuda. Radiolabelled teratocarcinoma tetrasaccharides Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAc and Galβ1-4GlcNAc- β 1-6Gal β 1-4GlcNAc have been described [14].

I H-NMR spectroscopy

Prior to 1 H-NMR spectroscopic analysis, the oligosaccharide samples $(60-130 \text{ nmol})$ were repeatedly treated with

 ${}^{2}H_{2}O$ at room temperature. After each exchange treatment the samples were lyophilized. Finally, the samples were dissolved in ${}^{2}H_{2}O$, and ${}^{1}H_{1}NMR$ spectroscopy was performed at 500 MHz in a Bruker AM 500 spectrometer (BioCarb Chemicals, Lund, Sweden) operating in a Fourier transform mode. The probe temperature was kept at 300 K. Chemical shifts, expressed downfield from internal 4,4 dimethyl-4-silapentane-l-sulfonate, were actually measured by reference to internal acetone ($\delta = 2.225$ ppm) with an accuracy of 0.002 ppm.

Results

Preparation and characterization of the tetrasaccharide substrates

The structures of the radiolabelled oligosaccharides 1-8 of the present experiments are given in Table 1. The trisaccharides 1-4 were β (1-4)-galactosylated enzymatically to yield radiolabelled tetrasaccharides 5-8, respectively. These were isolated by paper chromatography using solvent A. The tetrasaccharides 5 and 6 migrated on paper like the radiolabelled marker saccharides from teratocarcinoma cells, Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAc and Galβ1-4GlcNAc- β 1-6Gal β 1-4GlcNAc, respectively (data not shown). The glucose-containing tetrasaccharide 7 was slower (R_{MTet}) = 0.91) than its *N*-acetylglucosamine analogue 5 (R_{M1} = 1.27). In the same way, the glucose-containing tetrasaccharide 8 was slower ($R_{\text{MTet}} = 0.80$) than its N-acetylglucosamine analogue 6 ($R_{\text{Mtet}} = 1.07$). The tetrasaccharides 6 and 8, containing the mid-chain $GlcNAc\beta$ 1-6Gal sequence, were slower than their GlcNAc β 1-3Gal-containing isomers 5 and 7, respectively.

Degalactosylation of the tetrasaccharides $5-7$ with β galactosidase from *D. pneumoniae* regenerated the original trisaccharides 1-3, respectively. This was shown by paper chromatography in solvents A and B (data not presented). The tetrasaccharide 8 was also degraded completely by this enzyme, liberating $\lceil^{14}C\rceil$ galactose (data not shown). These

Table 1. Oligosaccharides studied in the present experiments.

	Number Saccharide	Digestibility with $endo - B -$ galactosidase
	$GlcNAc\beta1-3Ga1\beta1-4GlcNAc$	
	$GlcNAc\beta1-6Ga1\beta1-4GlcNAc$	
3	$GlcNAc\beta1-3Ga1\beta1-4Glc$	ND^a
	$GlcNAc\beta1-6Ga1\beta1-4Glc$	ND ^a
5	$Gal\beta1-4GlcNAc\beta1-3Gal\beta1-4GlcNAc$	\pm
6	Galß1-4GlcNAcß1-6Galß1-4GlcNAc	
	$Gal\beta1-4GlcNAc\beta1-3Gal\beta1-4Glc$	
	$Gal\beta1-4GlcNAc\beta1-6Gal\beta1-4Glc$	

 $^{\circ}$ ND = Not determined in the present experiments.

Figure 1. Endo- β -galactosidase digests of radiolabelled tetrasaccharides 6 and 8, analysed by paper chromatography in solvent A. A. A 40 h chromatogram of a digest from Gal β 1-4^{[3}H]GlcNAc- β 1-6Gal β 1-4[³H]GlcNAc ([³H] 6). If Gal β 1-4[³H]GlcNAc β 1-6Gal had been present, its peak would have been at fraction 7.8, not clearly separated from the intact substrate. B. A 110 h chromatogram of a digest from Gal β 1-4GlcNAc β 1-6^{[14}C]Gal β 1-4GlcNAc \lceil ¹⁴C] 6). If Gal β 1-4GlcNAc β 1-6 \lceil ¹⁴C]Gal had been present, its peak would have been at fraction 20.0 [14], clearly discernible. C. A 63 h chromatogram of a digest from $[^{14}C]\text{Gal}\beta1$ -4GlcNAc β 1-6Gal β 1-4Glc (8). If $[^{14}C]$ Gal β 1-4GlcNAc β 1-6Gal had been present, its peak had been at fraction 10.3 [14], clearly discernible. Arrows show positions of unlabelled markers.

experiments proved that all four tetrasaccharides 5–8 contained Galß1-4GlcNAc sequences at their nonreducing termini [16].

Endo- β -galactosidase treatment of the tetrasaccharides (6) and (8)

The tetrasaccharide 6, Gal β 1-4^{β}H]GlcNAc β 1-6Gal β 1-4^{β}H]-GlcNAc, resisted the action of endo- β -galactosidase from B. fraquilis (Fig. 1a). Neither labelled N-acetylglucosamine nor other cleavage products were detected in the digest: the unchanged substrate was the only labelled compound present.

Another radiolabelled form of the tetrasaccharide 6. Gal β 1-4GlcNAc β 1-6^{[14}C]Gal β 1-4GlcNAc, also resisted the enzyme (Fig. 1b). In this experiment, a rather long paper chromatogram was run to separate $Ga1\beta1-4G1cNAc\beta1 6[^{14}C]$ Gal, a possible cleavage product, from the substrate. However, no radiolabelled Galß1-4GlcNAcß1-6Gal was detected; instead, the original tetrasaccharide 6 was recovered in good vield. The experiment of Fig. 1b was repeated with the same result also using a large sample (3764 counts \min^{-1} , 7 pmol) of $\lceil^{14}C \rceil$ that had been prepared by in vitro enzymatic synthesis (data not shown). On the basis of this experiment, a cleavage exceeding 0.5% can be excluded.

The tetrasaccharide 8, $\lceil {}^{14}C \rceil$ Gal β 1-4GlcNAc β 1-6Gal β 1-4Glc $(11574 \text{ counts min}^{-1}, 18 \text{ pmol})$ also resisted the enzyme (Fig. 1c).

Endo- β -galactosidase treatment of the tetrasaccharides 5 and 7

The tetrasaccharide 5, Gal β 1-4GlcNAc β 1-3[U-¹⁴C]Gal β 1-4GlcNAc, was cleaved in the expected manner, releasing Gal β 1-4GlcNAc β 1-3[U-¹⁴C]Gal (Fig. 2a). The glucosecontaining tetrasaccharide 7, Gal β 1-4GlcNAc β 1-3Gal β 1- $4\Gamma^{14}$ C]Glc, was also cleaved at the internal galactosidic linkage; it released labelled glucose in a yield of 90% (Fig. $2(b)$).

Endo- β -galactosidase treatment of trisaccharides 1 and 2

Endo- β -galactosidase treatment of the teratocarcinoma trisaccharide GlcNAcβ1-3[U-¹⁴C]Galβ1-4GlcNAc (1) cleaved 87% of the material into GlcNAc β 1-3[U-¹⁴C]Gal, which was identified chromatographically in solvent B (data not shown). The radiolabelled samples of 1 that were synthesized enzymatically were cleaved even more completely.

The teratocarcinoma trisaccharide 2, $[^3H]$ GlcNAc β 1- $6Ga1\beta1-4[^3H]$ GlcNAc, also resisted the enzyme (data not shown). Neither labelled N-acetylglucosamine, nor labelled $GlcNAc\beta1-6Gal$ was detected in the digest in a chromatographic run with solvent B; the original trisaccharide 2 was the only labelled compound observed.

Even another form of the teratocarcinoma trisaccharide 2, GlcNAc β 1-6[U⁻¹⁴C]Gal β 1-4GlcNAc (189 counts min⁻¹), resisted the enzyme; prolonged paper chromatography of the digest with solvent B revealed the presence of the original substrate, but GlcNAcß1-6[U-¹⁴C]Gal was not found (data not shown). This experiment was repeated with the same result by using a large sample (3349 counts min⁻¹, 6 pmol) of the trisaccharide 2 that had been prepared by in vitro synthesis.

Figure 2. Endo- β -galactosidase digests of radiolabelled tetrasaccharides 5 and 7, analysed by paper chromatography in solvent A. A. A 110 h chromatogram of a digest from $Ga1\beta1-4G1cNAc\beta1 3[^{14}C]Ga1\beta1-4GlcNAc$ (5); the calculated positions of radiolabelled markers Gal β 1-4GlcNAc β 1-3Gal and Gal β 1-4GlcNAc β 1- $3Ga1\beta1-4GlcNAc$ are 24.8 and 20.7, respectively. B. A 63 h chromatogram of a digest from Gal β 1-4GlcNAc β 1-3Gal β 1-4[¹⁴C]Glc (7); the calculated position of undigested substrate is 7.5. Arrows show positions of unlabelled markers.

Discussion

The present data show that radiolabelled samples of the trisaccharide 2, and the tetrasaccharides 6 and 8 (see Table 1 for the structures) resisted the action of endo- β -galactosidase from *B. fragilis* at 250 mU ml^{-1}, under conditions generally used for digestion with this enzyme. All three resistant saccharides contained a linear mid-chain $GlcNAc\beta1$ - $6Ga1\beta1-4R$ sequence. In a marked contrast, the saccharides 1, 5 and 7 of Table 1, all of which contained a linear mid-chain GlcNAc β 1-3Gal β 1-4R sequence, were readily cleaved by the enzyme under the same conditions.

These findings should prove useful for the detection, isolation and characterization of unbranched $GlcNAc\beta1-$ 6Gal backbone sequences in natural oligo- and polysaccharides. Such sequences have been reported rarely so far in natural saccharides [5, 17], but their *in vitro* biosynthesis has been observed in several systems [18-21].

We have previously found that endo- β -galactosidase from *Escherichia freundii* cleaves unbranched GlcNAcfll- $6Gal\beta1-4GlcNAc$ sequences poorly [14]. The substrate specificities of the endo- β -galactosidases of *E. freundii* and *B.fragilis* are known to resemble each other in many other

ways as well [1, 2]; only in their ability to cleave branch point galactosidic linkages located at the non-reducing end of extended linear sequences containing at least two Nacetyllactosamine units, may the two enzymes differ [3, 4, 22].

Our present findings appear to be at variance with the cleavage of linear $GlcNAc\beta$ 1-6Gal β 1-4Gal sequences reported recently by Hanisch *et al.* [5]. This difference may be partly semantic: Even Hanisch *et al.* found incomplete reactions. If a real difference exists, it may arise from the different substrate concentrations used; Hanisch *et al.* used typically 70 nmol of unlabelled substrates, whereas we used radiolabelled samples as small as 3-20 pmol in comparable experiments. A much more interesting possibility is that the $GlcNAc\beta$ 1-6Gal β 1-4R sequences of our samples, and those present in the oligosaccharides of Hanisch *et al.,* may have different properties. The saccharide chains studied by Hanisch *et al.* contained several adjoining GlcNAc_{*B*1}-6Gal units, whereas ours contained only one. Examples are known where a given saccharide sequence appears to possess variable properties in different molecules [23].

Acknowledgements

This work was supported in part by the grants no. 1011027 and 1011713 from the Finnish Academy, by grants from the University of Helsinki and from the Emil Aaltonen Foundation.

References

- 1. Scudder P, Uemura K, Dolby J, Fukuda MN, Feizi T (1983) *Biochem J* 213:485-94.
- 2. Scudder P, Hanfland P, Uemura K, Feizi T (1984) *J Biol Chem* 259:6586-92.
- 3. Scudder P, Lawson AM, Hounsell EF, Carruthers RA, Childs RA, Feizi T (1987) *Eur J Biochem* 168:585-93.
- 4. Hounsell EF, Feeney J, Scudder P (1988) *Biochem J* 250:9-13.
- 5. Hanisch F-G, Uhlenbruck G, Peter-Katalinic J, Egge H, Dabrowski J, Dabrowski U (1989) *3 Biol Chem* 264:872-83.
- 6. Renkonen O, Mäkinen P, Hård K, Helin J, Penttilä L (1988) *Biochem Cell Biol* 66:449-53.
- 7. Seppo A, Penttilä L, Makkonen A, Leppänen A, Niemelä R, Jäntti J, Helin J, Renkonen O (1990) *Biochem Cell Biol* 68:44-53.
- 8. Vliegenthart JFG, Dorland L, van Halbeek H (1983) *Adv Carbohydr Chem Biochem 41:209-374.*
- 9. Koenderman AHL, Koppen PL, Van den Eijnden DH (1987) *Eur J Biochem* 166:199-208.
- 10. Renkonen O, Niemelä R, Leppänen A, Maaheimo H, Seppo A, Penttilä L, Vilkman A (1991) *Glycoconjugate J* 8:368-75.
- 11. Yates AD, Watkins WM (1983) *Carbohydr Res* 120:251-68.
- 12. Brew K, Vanaman TC, Hill RL (1968) *Proc Natl Aead Sci USA* 59:491-7.
- 13. Hughes RC, Jeanloz RW (1964) *Biochemistry* 3:1535-43.
- 14. Renkonen O, Penttilä L, Makkonen A, Niemelä R, Leppänen A, Helin J, Vainio A (1989) *GIycoeonjugate J* 6:129-40.

380

Renkonen, Penttilii, Niemelgi, Leppdnen

- 15. Fukuda MN, Watanabe K, Hakomori S (1978) *J Biol Chem* 253:6814-9.
- 16. Paulson JC, Prieels JP, Glasgow LR, Hill RL (1978) *J Biol Chem* 253:5617-24.
- 17. Hounsell EF, Lawson AM, Feeney J, Cashmore GC, Kane DP, Stoll M, Feizi T (1988) *Biochem J* 256:397-401.
- 18. Van den Eijnden DH, Winterwerp H, Smeeman P, Schiphorst WECM (1983) *J Biol Chem* 258:3435-7.
- 19. Zielenski J, Koscielak J (1983) *FEBS Lett* 158:164-8.
- 20. Basu M, Basu S (1984) *J Biol Chem* 259:12557-62.
- 21. Yazawa S, Abbas SA, Madiyalakan R, Barlow JJ, Matta KL (1986) *Carbohydr Res* 149:241-52.
- 22. Fukuda M, Dell A, Oates JE, Fukuda MN (1984) *J Biol Chem* 259: 8260-73.
- 23. Dakour J, Hansson GC, Lundblad A, Zopf D (1986) *Arch Biochem Biophys* 248:677-83.